

Evolution Fasteners (UK) Ltd Units 2A & 2B Clyde Gateway Trade Park Dalmarnock Road, Rutherglen, Glasgow G73 1AN Tel: +44 (0)141 647 7100 / Fax: +44 (0)141 647 5100

Email: technical@evolutionfasteners.co.uk

www.evolutionfasteners.co.uk

PRODUCT DATASHEET A4 STAINLESS STEEL MULTI-FIX SCREW

Product Details

Designed for: Fixing timber battens, trunking, track and general

components into concrete, masonry and timber

Head style: 5/16" / 8mm across flats - hexagonal head

Material grade: AISI 316/ A4 Shank Material: Stainless Steel

A4 stainless steel multi-fix product range

Product Code	Size	Drill Point	Box Quantity	Carton Quantity
A4HH6.3-32-GP	6.3mm x 32mm	Gash Point	100	1,000
A4HH6.3-45-GP	A4HH6.3-45-GP 6.3mm x 45mm Gash Point		100	1,000
A4HH6.3-57-GP	6.3mm x 57mm	Gash Point	100	1,000
A4HH6.3-70-GP	6.3mm x 70mm	Gash Point	100	1,000
A4HH6.3-82-GP	6.3mm x 82mm	Gash Point	100	1,000
A4HH6.3-100-GP	6.3mm x 100mm	Gash Point	100	1,000
A4HH6.3-125-GP	6.3mm x 125mm	Gash Point	100	1,000
A4HH6.3-140-GP	6.3mm x 140mm	Gash Point	100	1,000

Technical Data

Hardness Rating (Vickers scale)			Unfactored Mechanical Performance		
Diameter	Surface Hardness	Core Hardness	Diameter	Tensile Strength	Shear Strength
6.3mm	577.4 HV0.3	465.1 HV0.3	6.3mm	18.7kN	8.9kN

Ultimate pull out loading from steel						
	Steel substrate (S275 JR mild steel)					
Major diameter Steel thickness Steel thickness Steel thickness						
6.3mm	0.7mm	1.0mm	1.2mm			
Force	1.0kN	1.4kN	2.0kN			

Technical Data continued...

Ultimate pull out loading from timber						
Major diameter	Timber grade	Embedment depth	Load			
6.3mm	C16	25.0mm	2.3kN			
0.011111		35.0mm	3.7kN			

Ultimate Loading: Withdrawal Resistance (Concrete and Masonry Substrates)						
Embedment Depth (mm)	C25/30 Concrete (30N/mm2)	Aerated Concrete Block (7N/mm2)	Class A Engineering Brick (75 N/mm2)			
25.0	2,850 N	650 N	3,690			
35.0	6,890 N	1,010 N	9,670			

Characteristic/ Safe Loading: Withdrawal Resistance (Concrete and Masonry Substrates, γ = 3.0)						
Embedment depth (mm)	C25/30 Concrete (30N/mm2)	Aerated Concrete Block (7N/mm2)	Class A Engineering Brick (75 N/mm2)			
25.0	950 N	210 N	1,230			
35.0	2,290 N	330 N	3,220			

Concrete and masonry setting information						
Substrate type	Category	Data				
All	Nominal embedment depth	35.0mm				
Non cracked concrete (>30N/mm2)	Minimum base material thickness Minimum screw spacing Minimum edge distance	100.0mm 55.0mm 55.0mm				
Cracked concrete (>30N/mm2)	Minimum base thickness Minimum screw spacing Minimum edge distance	100.0mm 40.0mm 55.0mm				

	Influence of Compressive Strength on Withdrawal Resistance (Reduction Factors)								
Nominal Anchor Diameter	Drill Hole	Embedment Depth		Comp	oressive S	trength –	Cube (EN	1992)	
(mm)	(mm)	(mm)	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	≥C50/60
6.3	5.15	25/0	0.6		1.0		1.	.2	1.3
0.5	3.13	35.0	0.7	1.0	1.1	1.2	1.3	1.4	1.5

	Influence of edge distance on loadings (reduction factor)									
Percentage of stated minimum	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Reduction factor	N/A	N/A	N/A	N/A	N/A	0.75	0.80	0.85	0.90	1.00

NOTE: The results expressed in the datasheet are taken as mean loads from a range of empirical tests and are ultimate unfactored loads. Each specifier or end user should make his/ her own decision on what safety factors to use relevant to their design application (such as BS 5950, EN 1991, etc).

Errors and Omissions Excepted.

ABOUT OUR TESTING

All test results were derived from empirical testing performed by ETAS (Evolution Testing & Analytical Services), a UKAS (United Kingdom Accreditation Service) accredited testing laboratory (Accreditation No. 7485). The following tests were performed to the following standards.

Testing Procedures

7485

Test/ Parameter	Standard/ Method/ Procedure
Ultimate Tensile	ISO 6892-1: 2009 "Metallic materials – tensile testing – Part 1: Method of test at room temperature".
Ultimate Shear	MIL-STD-1312-13 "Military Standard: Fastener test method (Method 13) Double shear test".
Pull Out (Withdrawal Force)	EN 14566: 2009 "Mechanical fasteners for gypsum plasterboard systems. Definitions, requirements and test methods".
Pull Over	EN 14592: 2008 "Timber structures. Dowel type fasteners. Requirements".
Hardness	ISO 650 7-1: 2005 "Metallic materials – Vickers hardness test – Part 1: Test method".
Corrosion Resistance	EN ISO 9227: 2012 "Corrosion tests in artificial atmospheres. Salt spray tests".
Drilling Time Test	EN 14566: 2009 "Mechanical fasteners for gypsum plasterboard systems. Definitions, requirements and test methods".

Laboratory Contact Details

Evolution Testing & Analytical Services

Units 2A & 2B Clyde Gateway Trade Park

Dalmarnock Road Rutherglen

South Lanarkshire

G73 1AN

T: (0141) 643 4125 **F:** (0141) 647 5100 **E:** sales@etasuk.com